

Fairness in Entity Matching and Blocking

Presenter: Mohammad Hossein Moslemi

Supervisor: Mostafa Milani

List of Contents

- Context and Motivation
- Part 1: Blocking
 - Quality of Blocking
 - Bias Measurement in Blocking
 - Experiments
- Part 2: Matching
 - Problem Definition
 - Calibration Algorithm
 - Experiments
- Conclusion and Future Work

Context and Motivation

Entity Matching

- Entity Matching (EM)
 - Identifies records referring to the same real-world entity across datasets.
- Step 1: Blocking
 - Groups similar records to eliminate unlikely pairs
 - Minimizes computational overhead
 - Often based on simple attributes (e.g., ZIP code, first letter of name)
- Step 2: Matching
 - Generates final matched pairs through ML or rule-based methods
- Why two steps?
 - Blocking reduces O(n²) comparisons
 - Matching ensures precision and accuracy

Fairness in Machine Learning

- ML models can amplify social biases present in data.
- Sensitive attributes (e.g., race, gender) should not unfairly influence outcomes.
- Bias types:
 - Direct: Sensitive attribute is explicitly used in prediction.
 - Indirect: A correlated feature causes unfair impact.
- Real-world risk: Unfair decisions in loans, healthcare, etc.
- Goal: Build equitable models with high accuracy.

Fairness in Entity Matching

Example of bias in EM

Google's algorithm shows prestigious job ads to men, but not to women. Here's why that should worry you.

By Julia Carpenter

The Washington Post

Airline "no-fly" lists trample the rights of people of color. Seattle should not allow

hotels to create "no stay" lists

Amy Roe, Former ACLU-WA Senior Writer Published: Friday, July 19, 2019

Knowledge Gap

Blocking and Fairness

Very limited research on fairness-aware blocking strategies.

Matching and Fairness

- Fewer studies compared to general ML fairness.
- Bias in similarity scores is often overlooked.
- Lacks methods to reduce score-level bias effectively.

Our Contribution

Part 1: Fairness in Blocking

- Defined a fairness metric specific to blocking.
- Evaluated bias across multiple blocking methods.
- Showed how blocking bias propagates to matching stage.

Part 2: Fairness in Matching

- Introduced a score-based fairness metric for matchers.
- Developed a post-processing calibration algorithm to reduce bias.
- Tailored solutions for different fairness definitions.

Part 1

Blocking

Quality of Blocking

- Blocking: Groups similar records to avoid full pairwise comparisons.
- Goal: Maximize true matches, minimize unnecessary comparisons.
- Metrics (P: All pairs, M: True matches, C: Candidate set):
 - Reduction ratio (RR): $1 \frac{|C|}{|P|}$
 - Pair completeness (PC): $\frac{|C \cap M|}{|M|}$
 - Example:
 - P: $\frac{10\times9}{2}$ = 45, C: 3 + 6 + 3 = 12, M = 7
 - **RR** ≈ 0.73 , **PC** ≈ 0.71

Measuring Bias in Blocking

- Problem: Standard metrics (RR, PC) don't capture blocking bias.
- Minority Pair: A pair is minority if at least one record is minority.
- Fairness Metrics:
 - $\Delta RR = RR_b RR_a$
 - $\Delta PC = PC_b PC_a$

Example:

- Before: 21 Majority, 24 Minority pairs
- After: 5 Majority, 7 Minority pairs

•
$$PC_a \approx 0.33$$
, $PC_b = 1 \rightarrow \Delta PC \approx 0.67$

Experiments 1

Blocking

Experimental Setting

Datasets:

- 7 well established benchmarks in the literature
- Each dataset includes a sensitive attribute.

Blocking methods:

Evaluated 8 widely-used blocking techniques.

Bias Analysis Experiment

 Comparison of reduction ratio between Minority and Majority Groups across Models and Datasets.

Bias Analysis Experiment

 Comparison of pair completeness between Minority and Majority Groups across Models and Datasets.

Bias Propagation Experiment

	Model	AMZ-GOO	
	StdBlck	1.70 (98.37, 96.67)	
\rightarrow	QGram	<u>-1.01</u> (95.66, 96.67)	
	XQGram Suffix	6.16 (94.49, 88.33) 16.01 (89.34, 73.33)	
→	XSuffix AUTO CTT	18.15 (84.82, 66.67) 8.98 (88.98, 80.00) 2.79 (96.12, 93.33)	
	GRAPH	0.62 (93.95, 93.33)	

PC Bias on AMZ-GOO Dataset

Positive	Rate Bias
QGram	4.42×10^{-3}
XSuffix	8.11×10^{-3}

Propagated bias on a perfect matcher

Takeaways

- Blocking reduces complexity, but can introduce bias
- Biases in blocking can propagate to downstream matchers
- Blocking methods vary in bias even on the same dataset
- A single method shows varying bias across datasets
 - → Choose blocking methods based on both quality and fairness.
- Moslemi, Mohmmad Hossein, Harini Balamurugan, and Mostafa Milani. "Evaluating Blocking Biases in Entity Matching." 2024 IEEE Big Data, 2024.

Part 2:

Matching

Binary vs. Score-Based Matching

- Prior work treated EM as a binary task:
 - Reducing bias at a fixed threshold
- Fair at one threshold, highly biased at another

- Threshold Adjusting is crucial:
 - No-fly lists: Lower threshold → More detection, more false positives
 - Finance: Higher threshold → Avoids wrongful merges, protects privacy & security

Traditional Fairness Measures

There are many different fairness measures. Three major ones:

Demographic Parity (DP)

- Independence of prediction from groups
- $\hat{Y} \perp \!\!\!\perp A$

Equal Opportunity (EO)

- Independence of prediction from groups in true matches
- $\bullet \quad \widehat{Y} \perp \!\!\!\perp A \mid Y = 1$

Equalized Odds (EOD)

- Independence of prediction from groups in true matches non-matches
- $(\hat{Y} \perp \!\!\!\perp A \mid Y = 1)$ and $(\hat{Y} \perp \!\!\!\perp A \mid Y = 0)$

Score Function Fairness Measures

- Traditional fairness measures are threshold-dependent and can be misleading.
- Score bias for Φ (PR, TPR, ...)
 - Averaging bias of Φ across all thresholds.

$$bias(s,\Phi) = \int_0^1 |\Phi_b(s,\theta) - \Phi_a(s,\theta)| d\theta$$

Problem of Fair Entity Matching

- Consider score function s and performance metric Φ
- FairScore: Find new score function s* with bias(s*, Φ) < δ and minimal deviation from s.

$$s^* = \arg\min_{s' \in \mathcal{S}_{fair}} risk(s', s)$$

$$risk(s', s) = \mathbb{E}[|s'(X) - s(X)|], \qquad S_{fair} = \{s \mid bias(s, \Phi) \leq \delta\},$$

Solution: Score Calibration

- Minority and majority scores have different distributions.
- We aim to align them with minimal change to scores:
 - Wasserstein barycenter: A Central probability distribution.

Wasserstein barycenter of P and Q

- What is query point and Dataset D
- Example
 - 6 Minority in Red
 - 9 Majority in Blue
 - Query point score is 0.34 and majority

1. Sort minority and majority scores in dataset D. Add noise for continuity. Majority size is n_b , Minority size is n_a .

2. Locate the query's rank in its group (6th from top out of 9)

- 3. Transfer that rank to the other group
 - 6th out of 9 \rightarrow 4th out of 6

$scores_b$	$scores_a$ pos_a
0.97 0.89 0.85 0.37 0.35 0.31 0.25 0.22 0.18	$0.80 \ 0.72 \ 0.65 \ 0.46 \ 0.39 \ 0.28$

- 4. Take the values at the matched positions in both groups
- 5. Calibrated score is a **weighted average** based on **group sizes**.

Theoretical Insights

- It was an approximation not an exact computation
- Given initial score s, optimal score s*, calibrated score ŝ, and dataset size n, the bounds are:

$$bias(\hat{s}, PR) = O(n^{-1}),$$

 $risk(s^*, \hat{s}) = O(\log(n)^{-1/2}).$

- Intuition: As the size of D increases:
 - Bias reduces at a rate of $\frac{1}{n}$
 - Calibrated score gets closer to s* at $\frac{1}{\sqrt{\log(n)}}$
- Detailed proof in the thesis

Conditional Score Calibration

- Aligning score distributions removes DP bias:
 - Same positive rate at all thresholds
- Doesn't remove EO or EOD, as they rely on true labels.
 - Solution: Calibrate using pairs with the same label as the query point.
- Labels for query point or dataset D may be unknown.
 - Solution: Estimate labels using a threshold that best splits scores in D.

Experiments 2

Matching

Experimental Setting

- Datasets:
 - Same as the blocking part
- Matching methods
 - 5 state-of-the-art methods

Calibration Performance on DP

MZ-GOO DBLP-ACM

Risk change is minimal; details come after conditional calibration bias results.

Conditional Calibration Performance

Effect on Risk

Takeaways

- Calibration works well for DP, but not for label-based metrics.
- We propose Conditional Calibration, which handles this much better.
- Risk (AUC) impact is minimal, especially with conditional calibration, as it accounts for labels, causing fewer changes.
- Moslemi, Mohammad Hossein, and Mostafa Milani. "Threshold-independent fair matching through score calibration." GUIDE-AI at SIGMOD. 2024.

Conclusion and Future Work

Conclusion

- Studied fairness in both blocking and matching steps of EM
- Designed new fairness metrics for blocking and analyzed bias in blocking methods
- Proposed post-processing methods to fix score bias
- Improved fairness with little impact on accuracy

Future Work

- Fairness in Blocking: Design methods to reduce bias in blocking
- Beyond Post-Processing: Try pre- and in-processing bias reduction
- Theory: Build stronger theoretical foundations for conditional calibration

References

- S. Nima, et al. "Through the Fairness Lens: Experimental Analysis and Evaluation of Entity Matching. In VLDB 2023
- E. Chzhen, et al. Fair regression with wasserstein barycenters. In NeurIPS2020
- C. Dwork, et al. Fairness through awareness. Innovations in theoretical CS conf., 2012.
- M. Ebraheem, et al. Distributed representations of tuples for ER. VLDB, 2018.
- M. Cuturi and et al. Fast computation of wasserstein barycenters. In ICML, PMLR, 2014.
- S. Nilforoushan, et al. EM with auc-based fairness. In IEEE Big Data, 2022.

Thank you!

