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Entity Matching

▪ Entity Matching (EM)
▪ Identifies records referring to the same real-world entity across datasets.

▪ Step 1: Blocking
▪ Groups similar records to eliminate unlikely pairs

▪ Minimizes computational overhead

▪ Often based on simple attributes (e.g., ZIP code, first letter of name)

▪ Step 2: Matching
▪ Generates final matched pairs through ML or rule-based methods

▪ Why two steps? 

▪ Blocking reduces O(n²) comparisons

▪ Matching ensures precision and accuracy
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Fairness in Machine Learning

▪ ML models can amplify social biases present in data.

▪ Sensitive attributes (e.g., race, gender) should not unfairly 
influence outcomes.

▪ Bias types:

▪ Direct: Sensitive attribute is explicitly used in prediction.

▪ Indirect: A correlated feature causes unfair impact.

▪ Real-world risk: Unfair decisions in loans, healthcare, etc.

▪ Goal: Build equitable models with high accuracy.
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Fairness in Entity Matching

▪ Example of bias in EM
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Knowledge Gap

▪ Blocking and Fairness
▪ Very limited research on fairness-aware blocking strategies.

▪ Matching and Fairness
▪ Fewer studies compared to general ML fairness.

▪ Bias in similarity scores is often overlooked.

▪ Lacks methods to reduce score-level bias effectively.
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Our Contribution

▪ Part 1: Fairness in Blocking
▪ Defined a fairness metric specific to blocking. 

▪ Evaluated bias across multiple blocking methods. 

▪ Showed how blocking bias propagates to matching stage.

▪ Part 2: Fairness in Matching
▪ Introduced a score-based fairness metric for matchers. 

▪ Developed a post-processing calibration algorithm to reduce bias. 

▪ Tailored solutions for different fairness definitions.
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Part 1

Blocking
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Quality of Blocking

▪ Blocking: Groups similar records to avoid full pairwise comparisons.

▪ Goal: Maximize true matches, minimize unnecessary comparisons.

▪ Metrics (P: All pairs, M: True matches, C: Candidate set):

▪ Reduction ratio (RR): 1 −
𝐶

𝑃

▪ Pair completeness (PC):  
𝐶∩𝑀

𝑀
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▪ Example: 

▪ P: 
10×9

2
= 45, C: 3 + 6 + 3 = 12, M = 7

▪ RR ≈ 0.73, PC ≈ 0.71



Measuring Bias in Blocking

▪ Problem: Standard metrics (RR, PC) don’t capture blocking bias.

▪ Minority Pair: A pair is minority if at least one record is minority.

▪ Fairness Metrics:

▪ ∆RR = RRb − RRa

▪ ∆PC = PCb − PCa

▪ Example: 
▪ Before: 21 Majority, 24 Minority pairs

▪ After: 5 Majority, 7 Minority pairs

▪ RRa =  1 −
7

24
≈ 0.71, RRb ≈ 0.76 →  ∆𝐑𝐑 ≈ 𝟎. 𝟎𝟓 

▪ PCa ≈ 0.33, PCb = 1 →  ∆𝐏𝐂 ≈ 𝟎. 𝟔𝟕
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Experiments 1

Blocking
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Experimental Setting

▪ Datasets: 
▪ 7 well established benchmarks in the literature

▪ Each dataset includes a sensitive attribute.

▪ Blocking methods: 
▪ Evaluated 8 widely-used blocking techniques.
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Bias Analysis Experiment 
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▪ Comparison of reduction ratio between Minority and Majority 
Groups across Models and Datasets.



Bias Analysis Experiment 
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▪ Comparison of pair completeness between Minority and 
Majority Groups across Models and Datasets.
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PC Bias on AMZ-GOO Dataset

Propagated bias on a perfect matcher

Bias Propagation Experiment 

Positive Rate Bias



Takeaways
▪ Blocking reduces complexity, but can introduce bias

▪ Biases in blocking can propagate to downstream matchers

▪ Blocking methods vary in bias even on the same dataset

▪ A single method shows varying bias across datasets

→Choose blocking methods based on both quality and fairness.

▪ Moslemi, Mohmmad Hossein, Harini Balamurugan, and Mostafa 
Milani. "Evaluating Blocking Biases in Entity Matching." 2024 IEEE 
Big Data, 2024.
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Part 2:

Matching
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Binary vs. Score-Based Matching

▪ Prior work treated EM as a binary task:
▪ Reducing bias at a fixed threshold

▪ Fair at one threshold, highly biased            
at another

▪ Threshold Adjusting is crucial:
▪ No-fly lists: Lower threshold → More detection, more false positives

▪ Finance: Higher threshold → Avoids wrongful merges, protects privacy & 
security
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Traditional Fairness Measures
▪ There are many different fairness measures. Three major ones:

▪ Demographic Parity (DP)
▪ Independence of prediction from groups
▪ ෠𝑌 ⫫ 𝐴

▪ Equal Opportunity (EO)
▪ Independence of prediction from groups in true matches
▪ ෠𝑌 ⫫ 𝐴 | 𝑌 = 1

▪ Equalized Odds (EOD)
▪ Independence of prediction from groups in true matches non-matches
▪ ( ෠𝑌 ⫫ 𝐴 | 𝑌 = 1) and ( ෠𝑌 ⫫ 𝐴 | 𝑌 = 0)
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▪ Traditional fairness measures are threshold-dependent and can 
be misleading.

▪ Score bias for Φ (PR, TPR, …)
▪ Averaging bias of Φ across all thresholds.
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Score Function Fairness Measures

0.005

0.034
0.14



Problem of Fair Entity Matching

▪ Consider score function s and performance metric Φ

▪ FairScore: Find new score function s* with bias(s*, Φ) < δ and 
minimal deviation from s.

23



Solution: Score Calibration

▪ Minority and majority scores have different distributions.

▪ We aim to align them with minimal change to scores:
▪ Wasserstein barycenter: A Central probability distribution.
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Wasserstein barycenter of P and Q



Score Calibration
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▪ What is query point and Dataset D

▪ Example
▪ 6 Minority in Red

▪ 9 Majority in Blue

▪ Query point score is 0.34 and majority



Score Calibration
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1. Sort minority and majority scores in dataset D. Add noise for 
continuity. Majority size is 𝑛𝑏, Minority size is 𝑛𝑎.



Score Calibration
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2. Locate the query’s rank in its group (6th from top out of 9)

3. Transfer that rank to the other group

– 6th  out of 9 → 4th out of 6



Score Calibration
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4. Take the values at the matched positions in both groups

5. Calibrated score is a weighted average based on group sizes.



Theoretical Insights
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▪ It was an approximation not an exact computation

▪ Given initial score s, optimal score s*, calibrated score ŝ, and 
dataset size n, the bounds are:

▪ Intuition: As the size of D increases:

▪ Bias reduces at a rate of 
1

𝑛

▪ Calibrated score gets closer to s* at 
1

log(𝑛)

▪ Detailed proof in the thesis



Conditional Score Calibration
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▪ Aligning score distributions removes DP bias:
▪ Same positive rate at all thresholds

▪ Doesn’t remove EO or EOD, as they rely on true labels.
▪ Solution: Calibrate using pairs with the same label as the query point.

▪ Labels for query point or dataset D may be unknown.
▪ Solution: Estimate labels using a threshold that best splits scores in D.



Experiments 2

Matching
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Experimental Setting

▪ Datasets: 
▪ Same as the blocking part

▪ Matching methods
▪ 5 state-of-the-art methods
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Calibration Performance on DP
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AMZ-GOO DBLP-ACM

▪ Risk change is minimal; details come after conditional calibration bias results.



Conditional Calibration Performance
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AMZ-GOO BEER



Effect on Risk
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AMZ-GOO



Takeaways

▪ Calibration works well for DP, but not for label-based metrics.

▪ We propose Conditional Calibration, which handles this much 
better.

▪ Risk (AUC) impact is minimal, especially with conditional 
calibration, as it accounts for labels, causing fewer changes.

▪ Moslemi, Mohammad Hossein, and Mostafa Milani. "Threshold-
independent fair matching through score calibration." GUIDE-AI 
at SIGMOD. 2024.
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Conclusion and 

Future Work
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Conclusion
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▪ Studied fairness in both blocking and matching steps of EM

▪ Designed new fairness metrics for blocking and analyzed bias in 
blocking methods

▪ Proposed post-processing methods to fix score bias

▪ Improved fairness with little impact on accuracy



Future Work
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▪ Fairness in Blocking: Design methods to reduce bias in blocking

▪ Beyond Post-Processing: Try pre- and in-processing bias 
reduction

▪ Theory: Build stronger theoretical foundations for conditional 
calibration



References

40

▪ S. Nima, et al. "Through the Fairness Lens: Experimental Analysis and 
Evaluation of Entity Matching. In VLDB 2023

▪ E. Chzhen, et al. Fair regression with wasserstein barycenters. In 
NeurIPS2020

▪ C. Dwork, et al. Fairness through awareness. Innovations in theoretical 
CS conf., 2012.

▪ M. Ebraheem, et al. Distributed representations of tuples for ER. VLDB, 
2018.

▪ M. Cuturi and et al. Fast computation of wasserstein barycenters. In 
ICML, PMLR, 2014.

▪ S. Nilforoushan, et al. EM with auc-based fairness. In IEEE Big Data, 2022.



Thank you!
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