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Entity Matching

" Entity Matching (EM)

= |dentifies records referring to the same real-world entity across datasets.

= Step 1: Blocking
= Groups similar records to eliminate unlikely pairs
= Minimizes computational overhead
= Often based on simple attributes (e.g., ZIP code, first letter of name)

= Step 2: Matching

= Generates final matched pairs through ML or rule-based methods
= Why two steps?

= Blocking reduces O(n?) comparisons

= Matching ensures precision and accuracy



Fairness in Machine Learning

= ML models can amplify social biases present in data.

= Sensitive attributes (e.g., race, gender) should not unfairly
influence outcomes.

= Bias types:
= Direct: Sensitive attribute is explicitly used in prediction.
= |ndirect: A correlated feature causes unfair impact.

= Real-world risk: Unfair decisions in loans, healthcare, etc.

" Goal: Build equitable models with high accuracy.



Fairness in Entity Matching

= Example of bias in EM

Google’s algorithm shows prestigious job
ads to men, but not to women. Here’s why
that should worry you.

D oo The Washington Post

Airline “no-fly” lists trample the rights of people of color. Seattle should not allow

hotels to create “no stay” lists
Amy Roe, Former ACLU-WA Senior Writer
Publ d day, July 19, 2019
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Knowledge Gap

= Blocking and Fairness
= Very limited research on fairness-aware blocking strategies.

= Matching and Fairness
= Fewer studies compared to general ML fairness.
= Bias in similarity scores is often overlooked.
= Lacks methods to reduce score-level bias effectively.
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Our Contribution

= Part 1: Fairness in Blocking
= Defined a fairness metric specific to blocking.
= Evaluated bias across multiple blocking methods.
= Showed how blocking bias propagates to matching stage.

= Part 2: Fairness in Matching
®» |ntroduced a score-based fairness metric for matchers.

= Developed a post-processing calibration algorithm to reduce bias.
= Tailored solutions for different fairness definitions.
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Part 1

Blocking
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Quality of Blocking

= Blocking: Groups similar records to avoid full pairwise comparisons.
= Goal: Maximize true matches, minimize unnecessary comparisons.

= Metrics (P: All pairs, M: True matches, C: Candidate set):

= Reduction ratio (RR): 1 — %

= Pair completeness (PC):

= Example:

s P22 =45 C3+64+3=12,M=7

= RR= 0.73,PC=0.71
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Measuring Bias in Blocking

" Problem: Standard metrics (RR, PC) don’t capture blocking bias.
= Minority Pair: A pair is minority if at least one record is minority.

=  Fairness Metrics:
= ARR = RR, — RR,
= APC = PC, — PC,

= Example: \'6. .--
= Before: 21 Majority, 24 Minority pairs

= After: 5 Majority, 7 Minority pairs
= RR, = 1- % ~ 0.71, RR, = 0.76 - ARR = 0.05
= PC, =033, PC, =1- APC= 0.67



Experiments 1

Blocking
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Experimental Setting

= PDatasets:

= 7 well established benchmarks in the literature
= Each dataset includes a sensitive attribute.

= Blocking methods:

= Evaluated 8 widely-used blocking techniques.
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Bias Analysis Experiment

= Comparison of reduction ratio between Minority and Majority
Groups across Models and Datasets.

Model: Standard Model: CTT
99.99
100\ 99739945 99829968 @ it 99.802223 100 99.7799.77  99.9299.92  99.8999.93
99 99
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96 Minority 96 Minority
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95 1 T
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Bias Analysis Experiment

= Comparison of pair completeness between Minority and
Majority Groups across Models and Datasets.

Model: Standard Model: CTT
100 100.00 100 99.74 99.60
99.20
98.79
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. 96.67 e
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Bias Propagation Experiment

Model AMZ-GO0O
stdBlck  1.70 (98.37, 96.67)

— GEam -1.01 (95.66, 96.67) - .
XOGram 6.16 (94.49, 88.33) Positive Rate Bias

Suffix 16.01 (89.34, 73.33)
— XSuffix 18.15 | (84.82, 66.67)

OGram  4.42x1073
XSuffix 8.11x1073

AUTO 8.98 (88.98, 80.00)
CIT 2.79 (96.12, 93.33) Propagated bias on a perfect matcher
GRAPH 0.62 (93.95 , 93.33)

PC Bias on AMZ-GOO Dataset
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Takeaways

Blocking reduces complexity, but can introduce bias

Biases in blocking can propagate to downstream matchers

= Blocking methods vary in bias even on the same dataset

= Asingle method shows varying bias across datasets

- Choose blocking methods based on both quality and fairness.

=  Moslemi, Mohmmad Hossein, Harini Balamurugan, and Mostafa
Milani. "Evaluating Blocking Biases in Entity Matching." 2024 |EEE
Big Data, 2024.
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Part 2:

Matching
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Binary vs. Score-Based Matching

= Prior work treated EM as a binary task:
= Reducing bias at a fixed threshold

1.07

—— Minority
a8 —— Majority
= Fair at one threshold, highly biased _ . b
at another = 0.4- E
0.2
0.0+

0.0 0.2 0.4 0.6 0.8 1.0
. . . . Threshold (6)
= Threshold Adjusting is crucial:

= No-fly lists: Lower threshold - More detection, more false positives

= Finance: Higher threshold - Avoids wrongful merges, protects privacy &
security



Traditional Fairness Measures

* There are many different fairness measures. Three major ones:

= Demographic Parity (DP)
= |ndependence of prediction from groups
= V1A

= Equal Opportunity (EO)

= |ndependence of prediction from groups in true matches
= YILA|Y =1

= Equalized Odds (EOD)

= |ndependence of prediction from groups in true matches non-matches
= (YLA|Y=1Dand (Y LA|Y =0)
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Score Function Fairness Measures

* Traditional fairness measures are threshold-dependent and can
be misleading.

= Score bias for @ (PR, TPR, ...)

= Averaging bias of @ across all thresholds.

0.14 |
0.034

| 1 064 | 0.005.
bias(s,®) = f |D,(s, ) — D(s,0)| db Q l |
0

o
[ %]
| 1 1

1 I
00 02 04 06 08 1.0
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Problem of Fair Entity Matching

= Consider score function s and performance metric ®

= FairScore: Find new score function s* with bias(s*, ®) < § and
minimal deviation from s.

s* = arg min risk(s’, s)
s’ ESfair

risk(s’, s) = IE[IS’(X) - s(X)I], Spir = [s | bias(s, @) < 5},
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Solution: Score Calibration

= Minority and majority scores have different distributions.

= We aim to align them with minimal change to scores:
= Wasserstein barycenter: A Central probability distribution.

o © o
= N N
v o u

Probability

“4 2 8 32 4 & 8
X
Wasserstein barycenter of P and Q
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Score Calibration

= What is query point and Dataset D

= Example
= 6 Minority in Red
= 9 Majority in Blue
= Query point score is 0.34 and majority

dataset D

A @ A ) N B G
r090nf0 84\{038/\\098/ 036‘;(03 ;u.o. 4 0.21)0.19
G . / \ 4 \\k'_/ \_'/‘/ \\\#’,//
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Score Calibration

1. Sort minority and majority scores in dataset D. Add noise for
continuity. Majority size is n,, Minority size is n,.

dataset D

add noise & sort l

SCOrecsy SCOre€s,
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Score Calibration

2. Locate the query’s rank in its group (6" from top out of 9)

query pair p

scoresy, pOSb scores,

3. Transfer that rank to the other group
— 6% outof 9 2 4thout of 6

SCOrecsy SCOres, POS,
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Score Calibration

4. Take the values at the matched positions in both groups
5. Calibrated score is a weighted average based on group sizes.

SCoresy poSsy SCOI€S, POS,
9.31) 19.37) (\).46/‘

calibrated score
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Theoretical Insights

= |t was an approximation not an exact computation

" @Given initial score s, optimal score s*, calibrated score §, and
dataset size n, the bounds are:

bias(§, PR) = O(n™),
risk(s*, §) = O(log(n)™'/?).

= |ntuition: As the size of D increases:

. 1
= Biasreduces at a rate of;

= Calibrated score gets closer to s* at

1
Vlog(n)

" Detailed proof in the thesis



Conditional Score Calibration

= Aligning score distributions removes DP bias:
= Same positive rate at all thresholds

" Doesn’t remove EO or EOD, as they rely on true labels.
= Solution: Calibrate using pairs with the same label as the query point.

" Labels for query point or dataset D may be unknown.
= Solution: Estimate labels using a threshold that best splits scores in D.



Experiments 2

Matching
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Experimental Setting

= Datasets:
= Same as the blocking part

= Matching methods
= 5 state-of-the-art methods
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Calibration Performance on DP

127 mm Before 10.99 57 4.68
4.37
10- B After 0.45 . T
8.90 3.62
8_
3_
= 6 5.73
2_
4_
2- ol
0 0.09 0.09 0.09 0.10 0 0.09 0.09 0.09 0.14
Deep DITTO HierGATEMTran Deep DITTO HierGAT EMTran
Matcher Matcher
AMZ-GOO DBLP-ACM

= Risk change is minimal; details come after conditional calibration bias results.
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Conditional Calibration Performance

40+ 1 Before 38.98 43.84  44.00 44.33
[ Calib 40-
o C-Calib
30-
a 30+ 27.63
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O >0-
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Effect on Risk

[1 Before
98- EEE Calib
96.72 .. 96.93  96.82 EEE C-Calib
96_ 5.7 5.9 96.15 95.91
5.1
O 94-
-
<
92-
90_ 90.06 90.00
9.0
88

DITTO HierGAT EMTran Hmatch
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Takeaways

= Calibration works well for DP, but not for label-based metrics.

=" We propose Conditional Calibration, which handles this much
better.

= Risk (AUC) impact is minimal, especially with conditional
calibration, as it accounts for labels, causing fewer changes.

= Moslemi, Mohammad Hossein, and Mostafa Milani. "Threshold-
independent fair matching through score calibration." GUIDE-AI
at SIGMOD. 2024.
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Conclusion and
Future Work
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Conclusion

= Studied fairness in both blocking and matching steps of EM

= Designed new fairness metrics for blocking and analyzed bias in
blocking methods

" Proposed post-processing methods to fix score bias

" |mproved fairness with little impact on accuracy



Future Work

= Fairness in Blocking: Design methods to reduce bias in blocking

= Beyond Post-Processing: Try pre- and in-processing bias
reduction

* Theory: Build stronger theoretical foundations for conditional
calibration
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