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Entity Matching and Blocking

= Entity Matching (EM): Identifies record pairs from
data sources that refer to the same entity.

= Examples:
= Background Checks: Airport, Loans, ...
= Healthcare

= Blocking:
= Groups similar records to filter unlikely matches.
= Reducing computational costs and time.



Blocking Methods

= Traditional methods:
= Group records by attribute similarities
» Techniques like exact matches and sorted windows.

» Examples: Suffix array blocking, Sorted Neighborhood, ...

* Deep learning methods:
» Use deep learning to identify matches.
» Techniques like automated rule learning and threshold-
based similarity.

» Examples: AUTO-block, CTT-block, ...



Quality of Blocking

= Blocking quality:
» [ts ability to Maximize true matches and minimizing
non-matching pairs.

* For datasets D;and D,:
= P:All possible pairs: D; X D,
= M: True matches
» C: Candidate set after blocking

= Metrics:
= Reduction ratio (RR): 1 — % §>M
= Pair completeness (PC): com]

|M|
= Pair quality (PQ):

|cCNM|
| P




EM, Blocking and Fairness

= Examples of bias in EM:

0 By Julia Carpenter

Google’s algorithm shows prestigious job
ads to men, but not to women. Here’s why
that should worry you.

@he Washington Post

Airline “no-fly” lists trample the rights of people of color. Seattle should not allow

ACLU

hotels to create “no stay” lists

Amy Roe, Former ACLU-WA Senior Writer
Published: Friday, July 19, 2019
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Washington

= Bias propagation: Blocking biases affect matching;
fairness in blocking is crucial.




Bias measurement in Blocking

= Minority Pair: A pair (t,, t,) is minority if either ‘t;” or ‘t,’
belongs to a minority group.

= Group-wise metrics:
= P,:All pairs in group g € {a, b}
= Similarly, C, and M,.
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RR, = 1— &
g |Pgl

CqgNM
pc, = 19
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ARR = RR, — RR,
=

APC = PC, — PC,



Bias measurement in Blocking

= Example: Ablocking with three blocks.

= Minority entitles in blue, majority in orange.

* True pairs with red dash lines.

Before Blocking: @ : < O\ Qt %\
= Total initial palr —— =45 B b ”‘a : /

ts tc
= 21 Majority pair, 24 Minority palr@t*‘ Q{) OJ
_/

After Blocking:
= Total Pairs: 12
= 5 Majority pair, 7 Minority pair

* RR,= 1— — ~071, RR, ~0.76 > ARR ~ 0.05
" PCy=-~033, PC, =1- APC ~ 0.67 8



Experiments

= Datasets: 7 EM benchmark datasets:
» Amazon-Google (AMZ-GOO)
» Walmart-Amazon (WAL-AMZ)
» DBLP-GoogleScholar (DBLP-GOO)
» DBLP-ACM (DBLP-ACM)
» Beer (BEER)
» Fodors-Zagat (FOD-ZAG) =2 |P|= 180k pairs
» jTunes-Amazon (ITU-AMZ) 2 |P| = 382M pairs

= Blocking methods:

= Traditional:
» Standard, Qgram, EXT-Qgram, Suffix, EXT-Suffix

= Deep learning:
= AUTO, CTT, Semantic Graph



Experiments

= Runtime evaluation:
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Experiments
= Blocking quality:
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RR (%)

Experiments

Model: Standard

1001 99739966  29:8299.68
= Bias analysis (RR):
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PC (%)

Experiments
= Bias analysis (PC):
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Experiments
= Bias propagation to EM:

Model AMZ-GOO

StdBlck 1.70 (98.37, 96.67)

QGram -1.01 (95.66, 96.67)

XQGram 6.16 (94.49, 88.33) Metric DP (%) EO (%) EOD (%)

Suffix 16.01 (89.34, 73.33)
Xsuffix | 18.15](84.82, 66.67) QGram  4.42x107% 1.01 1.01

AUTO 8.98 (88.98, 80.00) XSuffix 8.11x1073 18.16 18.16
EnT 2.79 (96.12, 93.33)
GRAPH 0.62 (93.95 , 93.33) Propagated bias with a perfect matcher

PC Bias on amazon-google
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Experiments

= Removing sensitive attribute:

12mmm With Sens. attr.
10- M Without Sens. attr.

o N B~ O ©
L 1 1 L

DBLP-GOO ITU-AMZ BEER
a) Suffix

0..
DBLP-GOO ITU-AMZ BEER

b) AUTO

15



Conclusion and Future work

= Blocking Bias Impact
» Blocking in EM simplifies complexity but can introduce
significant biases.

= Method Variability
= No single blocking method consistently reduces disparities
across datasets.

= Future Directions
» Develop debiasing methods for blocking and extend them
across the EM pipeline.
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