Evaluating Blocking Biases in Entity Matching

- Mohammad Hossein Moslemi
- Harini Balamurugan
- Mostafa Milani

Content

- Background
 - Entity matching and Blocking definition
 - Blocking methods
 - Quality of Blocking
- Fairness and Blocking
- Measuring bias in Blocking
- Experimental Results

Entity Matching and Blocking

- Entity Matching (EM): Identifies record pairs from data sources that refer to the same entity.
- Examples:
 - Background Checks: Airport, Loans, ...
 - Healthcare
 - ...

Blocking:

- Groups similar records to filter unlikely matches.
- Reducing computational costs and time.

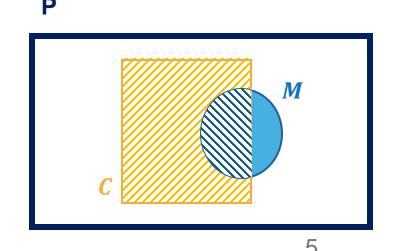
Blocking Methods

Traditional methods:

- Group records by attribute similarities
- Techniques like exact matches and sorted windows.
- Examples: Suffix array blocking, Sorted Neighborhood, ...

Deep learning methods:

- Use deep learning to identify matches.
- Techniques like automated rule learning and thresholdbased similarity.
- Examples: AUTO-block, CTT-block, ...


Quality of Blocking

Blocking quality:

- Its ability to Maximize true matches and minimizing non-matching pairs.
- For datasets D_1 and D_2 :
 - P: All possible pairs: $D_1 \times D_2$
 - M: True matches
 - C: Candidate set after blocking

Metrics:

- Reduction ratio (RR): $1 \frac{|C|}{|P|}$
- Pair completeness (PC): $\frac{|C \cap M|}{|M|}$
- Pair quality (PQ): $\frac{|C \cap M|}{|P|}$

EM, Blocking and Fairness

Examples of bias in EM:

Google's algorithm shows prestigious job ads to men, but not to women. Here's why that should worry you.

The Washington Post

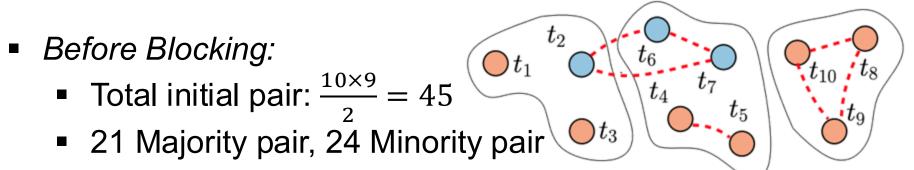
Airline "no-fly" lists trample the rights of people of color. Seattle should not allow

hotels to create "no stay" lists

Amy Roe, Former ACLU-WA Senior Writer Published: Friday, July 19, 2019

 Bias propagation: Blocking biases affect matching; fairness in blocking is crucial.

Bias measurement in Blocking

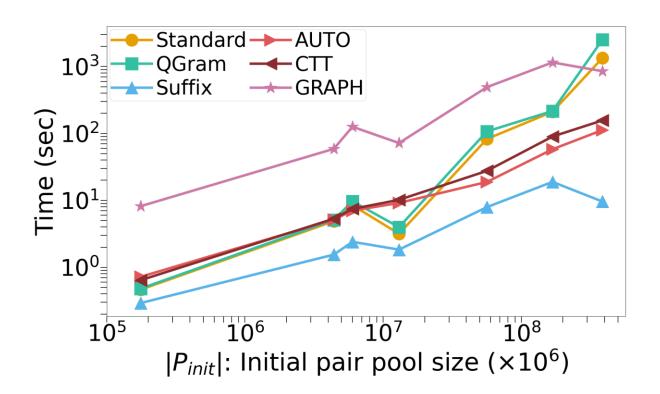

- Minority Pair: A pair (t_1, t_2) is minority if either ' t_1 ' or ' t_2 ' belongs to a minority group.
- Group-wise metrics:
 - P_g : All pairs in group $g \in \{a, b\}$
 - Similarly, C_g and M_g .

$$RR_{g} = 1 - \frac{|c_{g}|}{|P_{g}|} \Rightarrow \Delta RR = RR_{b} - RR_{a}$$

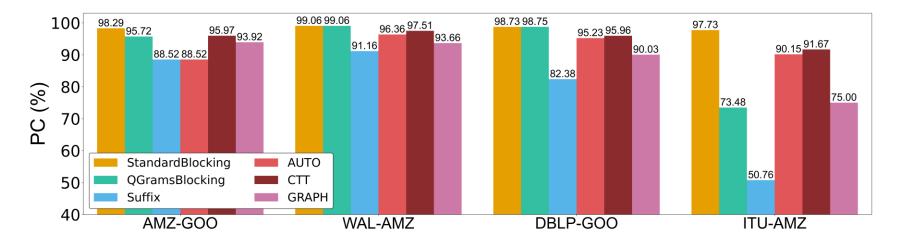
$$PC_{g} = \frac{|c_{g} \cap M|}{|M_{g}|} \Rightarrow \Delta PC = PC_{b} - PC_{a}$$

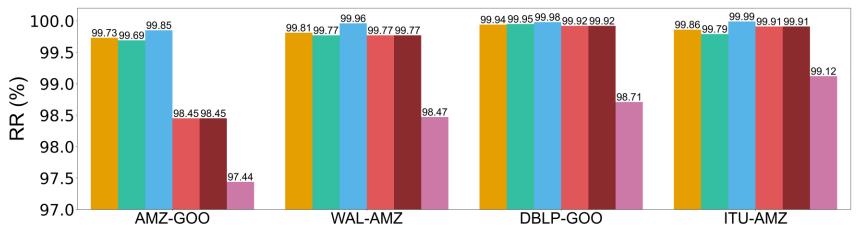
Bias measurement in Blocking

- **Example:** A blocking with three blocks.
 - Minority entitles in blue, majority in orange.
 - True pairs with red dash lines.

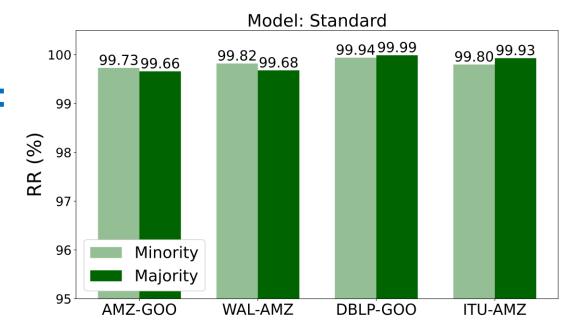

- After Blocking:
 - Total Pairs: 12
 - 5 Majority pair, 7 Minority pair
- $RR_a = 1 \frac{7}{24} \approx 0.71$, $RR_b \approx 0.76 \rightarrow \Delta RR \approx 0.05$
- $PC_a = \frac{1}{3} \approx 0.33, \ PC_b = 1 \rightarrow \Delta PC \approx 0.67$

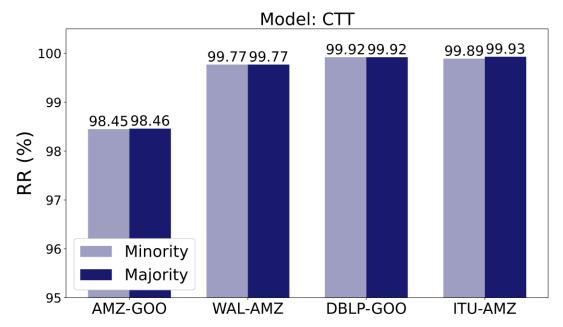
- Datasets: 7 EM benchmark datasets:
 - Amazon-Google (AMZ-GOO)
 - Walmart-Amazon (WAL-AMZ)
 - DBLP-GoogleScholar (DBLP-GOO)
 - DBLP-ACM (DBLP-ACM)
 - Beer (BEER)
 - Fodors-Zagat (FOD-ZAG) \rightarrow |P|= 180k pairs
 - iTunes-Amazon (ITU-AMZ) \rightarrow |P| = 382M pairs

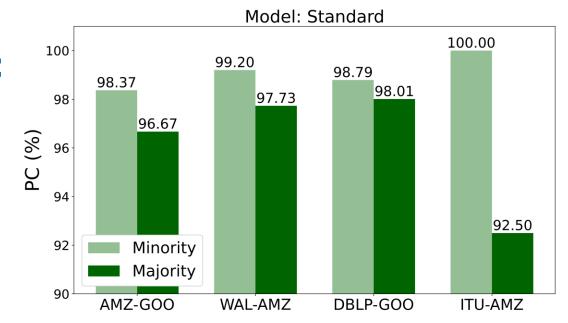

Blocking methods:

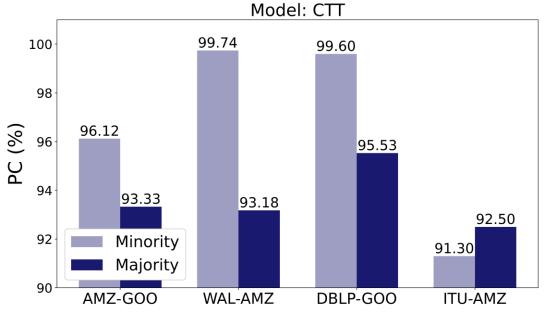

- Traditional:
 - Standard, Qgram, EXT-Qgram, Suffix, EXT-Suffix
- Deep learning:
 - AUTO, CTT, Semantic Graph

Runtime evaluation:



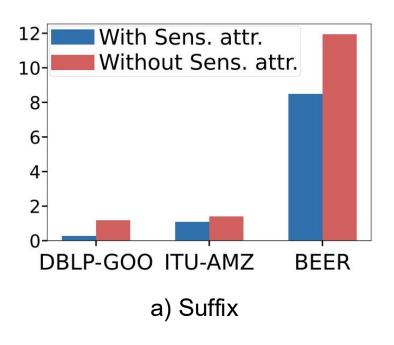

Blocking quality:

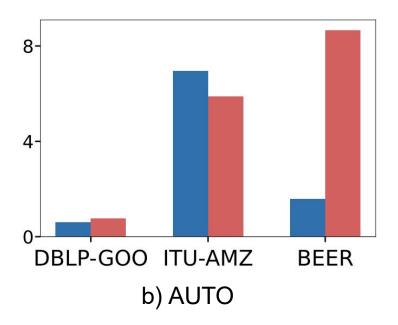



Bias analysis (RR):

Bias analysis (PC):

Bias propagation to EM:


Model	AMZ-GOO		
StdBlck	1.70 (98.37, 96.67)		
QGram	<u>-1.01</u> (95.66, 96.67)		
XQGram	6.16 (94.49, 88.33)		
Suffix	16.01 (89.34, 73.33)		
XSuffix	18.15 (84.82, 66.67)		
AUTO	8.98 (88.98, 80.00)		
CTT	2.79 (96.12, 93.33)		
GRAPH	0.62 (93.95, 93.33)		


Metric	DP (%)	EO (%)	EOD (%)
QGram XSuffix	$\begin{array}{c} 4.42 \times 10^{-3} \\ 8.11 \times 10^{-3} \end{array}$		1.01 18.16

Propagated bias with a perfect matcher

PC Bias on amazon-google

Removing sensitive attribute:

Conclusion and Future work

Blocking Bias Impact

 Blocking in EM simplifies complexity but can introduce significant biases.

Method Variability

 No single blocking method consistently reduces disparities across datasets.

Future Directions

 Develop debiasing methods for blocking and extend them across the EM pipeline.

References

- S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute, and V. Raghavendra, "Deep learning for entity matching: A design space exploration," in SIGMOD, 2018.
- C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, "Fairness through awareness," in ITCS, 2012.
- G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas, "Blocking and filtering techniques for entity resolution: A survey," CSUR, 2020
- A. Zeakis, G. Papadakis, D. Skoutas, and M. Koubarakis, "Pretrained embeddings for entity resolution: an experimental analysis," PVLDB, 2023.
- N. Shahbazi, J. Wang, Z. Miao, and N. Bhutani, "Fairness-aware data preparation for entity matching," in ICDE. IEEE, 2024.